Entries by Andy Biancotti

,

Estudio de caso - Soluciones innovadoras para la fabricación de cosméticos

A Dust Collection Success Story at Cosmetics Group USA

Antecedentes

Cosmetic Group USA is an ever growing developer and manufacturer of cosmetics and skin care for national and international brands.

Cosmetic Group USA is an ever growing developer and manufacturer of cosmetics and skin care for national and international brands.

Cosmetics Group USA is a California-based maker of a range of beauty products, partnering with the world’s most well-known cosmetics brands. The process of cosmetics manufacturing begins with the careful blending of raw materials to create the desired formulations. These powders are then finely milled and sifted to achieve the right texture and consistency.

Scope of Work

As part of their plans to expand and upgrade their Los Angeles factory, Cosmetics Group leadership recognized two main issues with dust collection that needed to be addressed:

  1. An efficient, central dust collection system with capacity to support planned operations and expansion in the factory.
  2. The air pressure in the building required balancing, as the dust collection system generated significant negative pressure, resulting in slamming doors, potential dust and particulates being pulled into the building through windows and doors, and inefficient heating and cooling of the facility.

solución

To resolve these challenges, the company partnered with Baghouse.com to design and install a dust collection system that would satisfy their unique challenges.

Our team worked efficiently to ensure the new dust collection system was up and running ahead of schedule, minimizing any disruptions to the Cosmetics Group’s operationssaid David Dal Santo, Systems Engineer for this project. 

Baghouse.com developed a dust collection system using two 4-32 cartridge dust collectors with high-efficiency nano-media cartridge filters and twin 75 HP ground-mount fans. The various process dust pickup points in the lab and production areas were connected to the dust collectors via galvanized steel, clamp-together duct, an economical duct configuration that is perfect for lighter duty applications like cosmetic powder and dust.

With high-efficiency nano-media cartridge filters and a robust ductwork design, we’re confident that this setup will exceed expectations for years to comesaid David Dal Santo.

Positioned on the clean air side of the unit, the HEPA after-filter acts as a secondary filtration stage, capturing even the tiniest microscopic particles before the air is returned to the facility.

Positioned on the clean air side of the unit, the HEPA after-filter acts as a secondary filtration stage, capturing even the tiniest microscopic particles before the air is returned to the facility.

To address the pressure balancing challenge, Baghouse.com designed the dust collection system exhaust to return to the building. Dual HEPA after-filter units were installed on the return air ductwork to meet compliance requirements and ensure the highest filtration efficiency for the filtered air that would be returned to the building. Baghouse.com also supplied and installed a central vacuum system with 30+ vacuum ports with flap valves for easy plug in of hoses where necessary.

In addition to the dust collection system sizing design, and delivery of the equipment, a Baghouse.com team installed the dust collection system and commissioned the units, successfully completing the project.

Conclusión

Baghouse.com developed a dust collection system using two 4-32 cartridge dust collectors with high-efficiency nano-media cartridge filters and twin 75 HP ground-mount fans. The various process dust pickup points in the lab and production areas were connected to the dust collectors via galvanized steel, clamp-together duct, an economical duct configuration that is perfect for lighter duty applications like cosmetic powder and dust.

Newly installed cartridge collectors, ductwork and HEPA After-Filters

We were excited to take on this challenge and are thrilled with the outcome. Helping Cosmetics Group USA expand their operations while solving their dust collection issues was truly a rewarding experience” said Matthew Coughlin, Engineer and Owner of Baghouse.com. 

Happy with the results of their new dust collection system, Cosmetics Group USA continues to work with Baghouse.com to support additional future expansion plans for their factory.

, ,

Filtros de pliegues: ¡La solución más inteligente y económica!

Filtros tradicionales vs. filtros de pliegues

fiberglass baghouse filter

Los filtros tipo bolsa están hechos de distintos materiales y pueden usarse en aplicaciones con altas temperaturas, mucho polvo, materiales abrasivos, corrosivos o con mucha humedad.

Los filtros tradicionales (de bolsa o manga) han sido el estándar en colectores de polvo por casi 100 años, y todavía son los más usados en casi todas las industrias. Son tan populares, entre otras cosas, porque son simples y baratos.

Pero cuando llega el momento de cambiarlos, ¿realmente siguen siendo la opción más económica si tomamos en cuenta todos los costos? En muchos casos, la respuesta es no. Por eso, una alternativa que vale la pena considerar es cambiar tus filtros y jaulas tradicionales por filtros de pliegues. Filtros de plieges

En este artículo te vamos a explicar qué son los filtros de pliegues y por qué pueden ser una mejor opción que los filtros tradicionales. 

¿Qué son los filtros de pliegues?

pleated filter design

Los filtros con muchos pliegues en el material proporcionan una mayor superficie de tela en un área reducida, permitiendo mejorar la relación aire-tela en la misma área del filtro

Como una de las tecnologías más nuevas en la recolección de polvo industrial, los filtros de pliegues tienen un mejor diseño que las bolsas o mangas tradicionales porque incluyen más tela filtrante en menos espacio. 

 

 

 

 

 

 

 

 

Otra ventaja es que, como son más cortos, queda más espacio libre entre los filtros y la parte de la tolva, lo que los mantiene alejados del flujo de aire sucio que entra. Eso ayuda a que se desgasten menos y que el polvo se libere mejor cuando se hace el pulso de limpieza.

traditional filter bags versus pleated filters

El menor largo de los filtros ayuda a reducir el desgaste que causan las partículas de polvo al chocar contra ellos y también hace que el aire entre más despacio, lo que mejora la limpieza del filtro cuando se activa el pulso de aire.

Además, los filtros plisados no necesitan jaulas, porque el filtro y la estructura están integrados en una sola pieza. Esto significa menos piezas por comprar, más fácil de almacenar, y más sencillo de instalar. También filtran mejor que los tradicionales y duran más, a veces hasta el doble. Estos filtros están diseñados para aguantar la carga de trabajo actual en plantas con alta producción, y en la mayoría de los colectores tipo pulse jet se pueden instalar sin necesidad de hacer modificaciones estructurales. 

¿Por qué usar filtros de pliegues en lugar de bolsas y jaulas tradicionales?

pleated filter graphic

Además de las ventajas técnicas, los filtros de pliegues también ofrecen beneficios económicos importantes. Pueden reducir los costos hasta en un 60%. ¿Cómo? Filtros de plieges 

 

  • — Menos filtros en total:

    Como estos Filtros de plieges tienen más superficie filtrante, se necesitan menos unidades para hacer el mismo trabajo. 

 

  • Pleated-Filters-Install-Step-1

    La instalación puede tomar hasta un 50% menos de tiempo comparado con el cambio de los filtros tradicionales.

    — Instalación más fácil y rápida:

    Al haber menos filtros y ser de una sola pieza, se instalan más rápido. El cambio puede tomar hasta la mitad del tiempo comparado con los filtros tradicionales. 

 

  • — Menor uso de aire comprimido:

    Como filtran mejor el polvo, estos filtros de pliegue se limpian más fácil, se necesita menos aire comprimido durante el ciclo de limpieza.

 

  • — Mayor duración:

    Al ser más cortos y activar el ciclo de limpieza menos veces, sufren menos desgaste. Esto hace que duren entre 25% y 75% más… ¡a veces hasta 2 o 3 veces más!

 

  • — Mejor rendimiento y más capacidad:

    Estos filtros de pliegues pueden mejorar mucho el rendimiento del colector, bajar emisiones, reducir el uso de electricidad y aumentar la capacidad del sistema. En algunos casos, se puede meter hasta 700% más tela filtrante en el mismo espacio.

bag filter square feet area versus pleated filter square feet area

Con esta capacidad extra, puedes elegir entre:

  1. Mantener el mismo flujo de aire y alargar la vida útil de los filtros.
  2. Aumentar el flujo de aire y usar un solo colector en lugar de varios, reduciendo costos operativos. 

Conclusión: los filtros de pliegues ofrecen muchas ventajas (en la aplicación correcta)

what is cheaper: a filter bag or a pleated filter?

Los filtros tradicionales suelen ser los más baratos por unidad, pero con los filtros plisados el costo total —a corto y largo plazo— para reemplazar y mantener tu colector de polvo puede bajar muchísimo.

Aunque los filtros tradicionales suelen ser más baratos por unidad, los filtros de pliegues pueden ayudarte a ahorrar mucho más a corto y largo plazo, además de mejorar el funcionamiento del sistema. Filtros de plieges

Eso sí, no son recomendables en todos los casos. Por ejemplo, no se usan donde hay temperaturas muy altas o gases muy corrosivos. Sí existen versiones especiales para alta temperatura, pero son más caras y solo valen la pena si hay un beneficio económico claro al mejorar el rendimiento del colector.   

En resumen: no solo te ayudan a ahorrar, sino que mejoran hasta la eficiencia y durabilidad. Los filtros de pliegue pueden marcar una gran diferencia en tu sistema de recolección de polvo.

¿Quieres saber más o ver si puedes cambiar tu colector a filtros de pliegues? Contáctanos en Baghouse.com.

, ,

Polvo peligroso: riesgos clave y soluciones prácticas para su gestión

How Harmful is Exposure to Dust in the Workplace?

In many industries, workers can be exposed to high levels of dust, causing breathing problems that could lead to life-threatening respiratory diseases. Most occupational lung diseases are caused by repeated, long-term exposure, but even a severe, single exposure to a hazardous agent can damage the lungs.

In What Industries is Dust a Hazard?

In many industries, workers can be exposed to high levels of dust, causing breathing problems that could lead to life-threatening respiratory diseases.

Manufacturing factories, processing facilities, and industrial sites all have the potential to emit dangerous dust.

Dust is a prevalent exposure at workplaces in various industries such as: 

  • — Minería 
  • — Foundries
  • — Chemical
  • — Food industries
  • — Stone working
  • — Woodwork

While many industries expose workers to dust, not all dust is equally harmful. Excessive exposure to some types of dust has been linked to the development of particular health problems, such as lung cancer or asthma. Different forms of the same substance may present different hazards. For example, a large piece of wood may be safe, but when ground into dust, it can become hazardous.

What Problems Can Exposure to Dust Lead To?

Exposure to any dust in excessive amounts can create respiratory problems. The harmful effects of dust can vary, from skin irritation to lung cancer, depending on the composition of the dust and the type and degree of exposure. Dust is not always an obvious hazard because the particles which cause the most damage are often invisible to the naked eye, and the health effects of exposure can take years to develop.

Safe Materials When Solid, Hazardous in Dust Form

As we mentioned, some materials that are generally safe in their solid form can become hazardous when they are ground into dust and inhaled over long periods. For example, Silica is found in materials like sand, stone, and concrete, silica is harmless in its solid state. However, when these materials are cut, ground, or drilled, they produce respirable crystalline silica dust. Prolonged exposure to this dust can lead to silicosis, a serious lung disease, as well as lung cancer and other respiratory issues.

Inherently Toxic Dusts

Exposure to any dust in excessive amounts can create respiratory problems.Other dusts are inherently toxic and should be avoided as much as possible due to their severe health risks:

  • Heavy Metals: Dust from metals like lead, cadmium, and arsenic can be extremely toxic. Inhalation of these dusts can lead to serious health issues, including damage to the nervous system, kidneys, and other organs.
  • Asbestos: Asbestos fibers, when inhaled, can cause severe lung diseases, including asbestosis, lung cancer, and mesothelioma. Even small amounts of asbestos dust can be dangerous.
  • Ácidos minerales: Dusts from mineral acids, such as sulfuric acid, can cause severe respiratory and skin irritation.

How Can We Prevent Dust-Related Diseases?

PTFE filters from Baghouse.com can easily reach sub-micron filtration ranges. In some applications efficiencies are high enough to allow for the recirculation of treated air back into the facility.

In some applications, PTFE membrane filtration efficiencies are high enough to allow for the recirculation of treated air back into the facility.

In normal situations with non-hazardous materials, a simple dust collector with basic filters is often sufficient to meet regulatory requirements. However, when handling hazardous dust, additional steps are necessary to comply with local regulations. For example, hazardous dust might require dust collectors fitted with high-efficiency filters, such as bags or cartridges with nanofiber or PTFE membranes. These filters capture a higher percentage of the smallest particles.

Using HEPA Filters for Extra Safety

Different stages of a HEPA after filter

HEPA after-filter serves as a powerful ally when searching for cleaner indoor air quality, particularly in industrial settings

If the dust is particularly hazardous, local authorities or safety regulators may require an extra set of filters known as after-filters or HEPA (High-Efficiency Particulate Air) filters. These are usually placed after the primary filters, either before or after the fan. HEPA filters act as a fallback safety measure. In normal operation, the primary filters capture all the dust. However, if there’s a hole or damage to the primary filters, the HEPA filters will capture any escaping dust, preventing it from being released into the environment or recirculated back into the building.

Conclusión

This guide aims to promote safety by educating company owners, managers, environmental personnel and workers about the dangers of hazardous dust and advocating for effective prevention strategies. Remember, a little awareness and action can go a long way in keeping your team safe and healthy.

Would you like to talk to a dust collection expert to determine if you are working with hazardous dust?

Are you wondering what measures should you take to keep your facilities safe?

, ,

Vacu-Valve: La solución económica y sin complicaciones para la descarga de polvo

Siempre que hablamos de sistemas de recolección de polvo, encontrar una solución económica, confiable y de bajo mantenimiento es super importante para mantener tus operaciones eficientes.

El Vacu-Valve es una válvula innovadora diseñada específicamente para la descarga continua de polvo de filtros de bolsa o ciclones con presión negativa, proporcionando un método eficiente y sin preocupaciones para descargar el material recolectado. A continuación, te explicamos cómo funciona y por qué es una excelente opción para diversas aplicaciones industriales.

Armadillo and Platypus Model Vacu-Valve
la
fitted sleeves adjust to the desired vacuum,
allowing for the continuous discharge of material
while still maintaining an adequate seal.

¿Cómo funciona el Vacu-Valve?

El Vacu-Valve opera basado en el equilibrio entre el vacío en el sistema por encima de la válvula y las características físicas del material, como el tamaño, la forma y la masa de las partículas.

  • — La válvula está equipada con una funda que actúa como una especie de sello hermético cuando está expuesta a la presión negativa.
  • — Este sello permite la descarga continua de material sin perder la integridad del sistema de vacío.
  • — Cuando las partículas de polvo se acumulan en la válvula, el peso y la gravedad las empujan hacia abajo a través de la funda, permitiendo que el material caiga sin comprometer la presión del sistema.

Este tipo de operación es ideal para partículas finas y esféricas, como la arena.

Industrias y aplicaciones más comunes

El Vacu-Valve es ampliamente utilizado en industrias que manejan polvo y materiales a granel bajo presión negativa, como:

Benefits of the Vacu-Valve

  • — Fundiciones
  • — Minería
  • — Cemento
  • — Farmacéutico
  • — Plasticos
  • — Químicos
  • — Fabricación

Vacu-Valve airlock design

Preguntas frecuentes

 

— ¿Qué es un Vacu-Valve?

Es una válvula de descarga continua que no requiere energía eléctrica, diseñada para manejar la descarga de polvo en sistemas de colección de polvo bajo presión negativa.

— ¿Puedo usar el Vacu-Valve en aplicaciones de alta temperatura?

Sí, especialmente si se utiliza la funda de silicona, que soporta temperaturas de hasta 550°F (260°C).

— ¿Qué tipo de partículas funcionan mejor con el Vacu-Valve?

Las partículas finas y esféricas, como la arena, tienden a ser las más adecuadas para este tipo de válvula.

— ¿Cuánto es la vida útil del Vacu-Valve?

La Vacu-Valve es altamente duradera y resistente al desgaste. Sus mangas están disponibles en diferentes materiales, como neopreno, nitrilo y silicona, lo que le permite ser utilizado en aplicaciones abrasivas o químicamente agresivas.

— ¿El Vacu-Valve requiere mantenimiento?

No requiere lubricación ni alimentación eléctrica, lo que lo convierte en una opción de bajo mantenimiento.

— ¿Qué tan rápido puedo recibir un Vacu-Valve después de realizar el pedido?

La mayoría de los Vacu-Valves están en stock y pueden enviarse dentro de 2 a 3 días hábiles después de realizar el pedido.

¿Por qué elegir el Vacu-Valve?

El Vacu-Valve es una solución muy rentable para la descarga contínua de polvo para muchas compañías. Ya sea que estés en minería, procesamiento de alimentos o en la industria farmacéutica, esta válvula ofrece un muy buen rendimiento sin los costos de mantenimiento de otros sistemas más complejos. La Vacu-Valve es una muy buena inversión.

¿Listo para simplificar tu sistema de gestión de polvo? Contáctenos hoy mismo para obtener más información sobre cómo el Vacu-Valve puede satisfacer tus necesidades industriales específicas.

, ,

New Partnership: Baghouse.com Becomes Authorized Partner for DustVent Equipment

Baghouse.com personnel working on a DustVent equipment.

Baghouse.com personnel servicing a DustVent dust collector.

We are thrilled to announce a new partnership between Baghouse.com y DustVent (Mid-Air Consulting), marking a significant milestone for both companies. Baghouse.com is now the exclusive service partner for all DustVent equipment including their Cyclone Collector, Fabric Collector, and Downdraft Bench. This partnership means that customers who own DustVent equipment can now rely on us for expert on-site service and support, maintenance and repairs for their equipment.

 

DustVent has a rich history, dating back to the 1970s when it was founded by an innovative engineer whose passion for dust collection systems laid the foundation for what the company is today. William Fitzpatrick (Fitz), the current owner, began his journey with DustVent in 1989, working closely with the company’s founder to redesign and enhance their product offerings. In 2008, the company rebranded as Mid-Air Consulting, and Fitz, along with his dedicated team, has continued to deliver high quality products.

 

Baghouse.com personnel working on a DustVent equipment.

Our team has the capability to service any DustVent collector or downdraft table.

By complementing DustVent’s products with our extensive expertise and on-site service capabilities, we can now ensure that your DustVent equipment continues to meet your production requirements. This collaboration not only enhances our service portfolio but also underscores our commitment to delivering the highest quality support and solutions to our clients.

We are excited about the possibilities this partnership brings and look forward to servicing more DustVent equipment.

Do you have DustVent equipment that needs service?

¿Estás listo para tu próximo cambio de filtros?

Give us a call at (702) 848-3990!

Caso de Estudio: Expansión en Sunshine Minting

Antecedentes

Sunshine Minting, a global supplier and processor of precious metals, was looking to upgrade their dust collection system to support new melt lines and future expansion. Their existing small collectors were inadequate for the increased capacity and airflow requirements.

Worker at a metal foundry
Sunshine Minting, Inc., is a company based in Coeur d'Alene, Idaho, that processes silver, gold and other precious metals.

Scope of Work

Sunshine Minting needed a dust collection solution with sufficient capacity and airflow to handle their expanding operations. Additionally, they required improvements in ductwork to connect both new and existing processes to the new system. A spark trap was necessary to mitigate the fire risk from sparks traveling through the ductwork into the collector. Additionally, flame resistant filters were used for extra protection.

solución

Baghouse.com responded to Sunshine Minting’s needs by dispatching a technician for an on-site inspection. The technician documented the facility layout, the proposed location for the new collector, and the new ductwork configuration. Following this, we installed an ACT 4-48 cartridge collector con a 20,000 CFM fan, a 50 HP motor, and a VFD control panel. A Boss Products Raptor Shield 22″ spark arrestor was also installed, along with connecting ductwork throughout the facility. The turnkey installation included programming of the VFD and airflow measurements to confirm adequate airflow and pressure at pickups and ducts.

What is a VFD?
It stands for Variable Frequency Drive, and is a type of fan controller. A VFD allows the user to run their dust collector fan at a lower or higher rate to manage performance. Rather than simply flipping a switch and running your fan at full speed (think 40kW per hour), the fan motor will run at a lower rate, saving significant energy costs in the long run.

Installation Challenges

Placing the new collector and fan without interfering with existing condensers and other equipment was a challenge. To overcome this, the inlet duct was routed up and over the area, and the fan exhaust was directed away from the facility as requested by the customer. These minor layout modifications are common and easily accomplished with a proper design and layout review.

Melting metal
Minting facilities often generate a high volume of metallic dust during operations such as melting, cutting, and polishing.

Outcome

The installation of the modern cartridge-style collector has provided Sunshine Minting with sufficient fan and filter capacity for current processes, and extra capacity for future expansion. The VFD controller on the fan improves power efficiency and allows for easy adjustment to accommodate future changes. The MERV 15 rated nano media filters, upgraded with flame retardant treatment, ensure maximum safety from sparks or hot coals.

Sunshine Minting now enjoys enhanced dust collection efficiency and safety, with the system’s additional capacity supporting their ongoing and future operational growth. The improved power efficiency and safety features represent a significant upgrade from their previous setup.

Conclusión

Baghouse.com successfully addressed Sunshine Minting’s dust collection needs with a comprehensive solution that supports their expanded operations and future growth, enhancing both safety and efficiency in their facility.

Would you like to know how a technical inspection and a system report al Baghouse.com could improve the efficiency of your operations? 

 

Talk now with one of our baghouse experts for more information!

Cómo medir tus filtros y jaulas de baghouse.

When ordering replacement baghouse bag filters, it is extremely important that you order the right size to ensure a proper fit in your baghouse.

Top Load Snap Band Baghouse Filter & Cage Measuring GuideProperly fitting bags and cages are integral to achieving long filter bag life and optimum baghouse performance. Filter bags come in a huge variety of sizes and types, to fit many makes and models of baghouses.

Measuring Filter Bags & Cages - Key Terms

Flat Width/Diameter

This is the most critical measurement, and the one people most often get wrong. As we need this size correct down to a ⅛”, it is not possible to measure the diameter of a loose bag accurately enough for ordering. For that reason, we instead rely on a flat width measurement, which we can then convert to an accurate diameter. 

Largo 

For top load pulse jet bags, the bag is the same length as the cage or just 1⁄2” longer. For bottom load pulse jets, where the top of the raw edge bag is folded over the top of the cage, we recommend 4” of overlap, but some OEMs recommend 2”. 

Tubesheet Hole Size/Snap Band Size 

Often the hardest dimension to confirm, a hole size measurement accurate down to 1/32” is required to ensure proper fit. For best results, measure the hole with calipers or check the OEM drawings for details. Alternatively, you can send a sample bag to confirm the tubesheet hole size or have us make a sample bag/cuff to test fit before releasing the entire order to production. 

Size Draft/Accurate Specifications

While it is usually possible to rely on previous bag sizing when reordering, at times, there may be reason to reconfirm all bag and cage sizing choices. Over time, sloppy or copy errors can result in slight variances in sizing making their way into orders and company records. In this way, the original bag sizing can see a slight, but impactful creep over successive orders. 

When we suspect this has happened, we may ask you to go back and provide us with the fundamental component sizing that dictates the overall bag and cage sizing. For top load pulse jet, reverse air, and many shaker units this is the tubesheet hole size. For bottom load pulse jets, and some reverse air/shaker units, it is the mounting hub/venturi. 

Once we have this fundamental sizing information, we can then recommend the proper bag and cage sizing. 

Bag/Cage Fit or “Pinch”

Filters that are too loose or too tight on the cages will severely limit collection efficiency and lead to premature failure. For most felt bag materials (polyester and aramid/nomex being the most common) we generally recommend ¼” to ½” of pinch, meaning the bag diameter is that much larger than the cage. Other specialty fabrics such fiberglass, P84, and fabrics with PTFE membrane applied to them may require tighter tolerances. 

Number Cage Vertical Wires and Horizontal Ring Spacing

Proper care must be taken to ensure that the cage construction will properly support the filter bag as well as optimize cleaning and efficiencies. Most fabrics work well with using cages with 10, 12 or 14 vertical wires. However, some specialty fabrics such fiberglass, P84, and fabrics with PTFE membrane applied to them require the additional support of 20 wire cages and possibly tighter spacing on the horizontal rings.

Common Bag and Cage Size Combos

Below we have listed a few common sizes for pulse jet and reverse pulse systems in use today. 

Top Load Style

  • —Bag: 6.25” x ¼” tubesheet hole, 5.875” diameter x 96”/120”/144” long, snap band top, disk bottom – Cage: 5.625” diameter x 96”/120/144” long, turned down flange top (with or without integral venturi), pan bottom, 12 vertical wires, horizontal rings on 8” centers
  • —Bag: 6.25” x ¼” tubesheet hole, 6” diameter x 96”/120”/144” long, snap band top, disk bottom – Cage: 5.75” diameter x 96”/120/144” long, turned down flange top (with or without integral venturi), pan bottom, 12 vertical wires, horizontal rings on 8” centers
  • —Bag: 5” x ¼” tubesheet hole, 4.625” diameter x 96”/120”/144” long, snap band top, disk bottom – Cage: 4.5” diameter x 96”/120/144” long, turned down flange top (with or without integral venturi), pan bottom, 12 vertical wires, horizontal rings on 8” centers

Bottom Load Style

  • —Bag: 5.865” diameter x 100”/124” long, raw top, disc bottom – Cage: 5.625” diameter x 96/120”” long, split collar top, pan bottom, 12 vertical wires, horizontal wires on 8” centers (Flex Kleen style bottom load)
  • —Bag: 4.625” diameter x 100”/124” long, raw top, disc bottom –  Cage: 4.5” diameter x 96/120”” long, split collar top, pan bottom, 10 vertical wires, horizontal wires on 8” centers (Mikropul bottom load and “twistlok” style)

Baghouse Cages - Different Styles Guide
Cantidad de alambres, estilo superior e inferior de las jaulas

 

Top Load, Snap Band Filter Bag 

Measuring filter bag

Use a tape measure or ruler and measure the width across the bag.

Flat width/Diameter

  1.  Lay the bag out on a table or floor, flatten it completely.
  2. Use a tape measure or ruler and measure the width across the bag.

 

Longitud

Mide a lo largo de la costura que recorre la longitud de la bolsa. Comienza en el centro de la banda de sujeción y termina en la primera costura en la parte inferior de la bolsa.

Cage-to-Bag (Bag-to-Cage) fit

Should have ¼” to 3/8” pinch; the bottom of the bag should have about a thumbs width between the bottom of the cage and the disc bottom of the bag.

 

Top Load, Snap Band Filter Bag – Woven Fiberglass

  1. Flat width: Flatten bag and measure width across.
  2. Longitud: Mide a lo largo de la costura que recorre la longitud de la bolsa. Comienza en el centro de la banda de sujeción y termina en la primera costura en la parte inferior de la bolsa.
  3. Cage-to-Bag (Bag-to-Cage) fit:  Should have 1/8” or less pinch, but shouldn’t be stretched tight around the cage.

Top Load, Snap Band Filter Bag – Felt with membrane

  1. Flat width: Flatten bag and measure width across.
  2. Longitud: Mide a lo largo de la costura que recorre la longitud de la bolsa. Comienza en el centro de la banda de sujeción y termina en la primera costura en la parte inferior de la bolsa.
  3. Cage-to-Bag (Bag-to-Cage) fit:  Should have 1/8” or less pinch, but shouldn’t be stretched tight around cage.

Shaker style Filter Bag

  1. Flat width: Flatten bag and measure width across.
  2. Longitud: Measure along the seam running the length of the bag. Start at the end of the snap band to the end of the bag, not including the tail.
  3. Length of the tail: Measure along the seam from the end of the bag to the end of the tail
  4. Flat width of the tail: Flatten tail and measure width.
  5. Determine if the tail is 3 ply or 4 ply by pinching the material and feeling for layers.
  6. If there is a wear cuff at the snap band end of the bag, measure length and width.

Measuring Cages - Step-By-Step

Step one: Measure from top to bottom the full length of the cage.

Step one: Measure from top to bottom the full length of the cage.

  1. Full length of the cage:  Mide de arriba a abajo.

Filter cage measuring

Mide el diámetro en el centro de la jaula, en el punto más ancho entre los cables. Idealmente, usar una cinta Pi para determinar la circunferencia proporcionará una medición exacta.

2. Diámetro: Mide el diámetro en el centro de la jaula, en el punto más ancho entre los cables. Idealmente, usar una cinta Pi para determinar la circunferencia proporcionará una medición exacta.

Be aware that some OEMs make the bottom pan slightly smaller than the cage body to make it easier to insert the cage into the bag. This is why you should always measure the diameter near the middle of the cage.

Filter cage measuring
AVOID measuring the diameter of the cage at the bottom. Measure diameter in the middle of the cage at the widest point between wires.

 

3. Bottom construction: Determina si la copa inferior está doblada o si los cables están soldados a la copa. 

4. Number of rings: Cuenta el número de anillos.

5. Space between rings:  Mide el espacio entre los anillos. Nota: el espacio entre el último anillo y la parte inferior de la copa puede ser diferente.

6. Number of vertical wires: Cuenta el número de alambres verticales que recorren la longitud de la jaula.

7. Material: Acero sin tratar, galvanizado, recubierto, acero inoxidable 304, o especifica si es otro material.

8. Determine the top construction of the cage:

    • — If the top has a venturi, measure the length of the venturi.

Filter cage venturi measuring
Venturi come in two styles: A separate drop in piece (shown here) or as integral versions that are welded into top of the cage (see photo below)

The Most Common Dust Collector Cage Styles
Venturi welded into top of the cage

The Most Common Dust Collector Cage Styles
Some of the most common dust collector cage styles
are Split Collar (or Rolled Band) for bottom load units

The Most Common Dust Collector Cage Styles
Other most common dust collector cage styles are Rolled Flange (or Turned Down Flange) and venturi for top load units

    • — If the top has a split top, measure the space between the groove in the split top and the end of the top

If the top has a split top, measure the space between the groove in the split top and the end of the top
On split top cages, measure the space between the groove in the split top and the end of the top

Tubesheet hole size measuring

Measure across the center of the hole in a straight line from one edge to the opposite edge.

Another important measurement to have in mind when ordering filters or cages, is the size of the tube sheet hole where our filters will be placed. This will ensure there is a perfect seal, extending the life of the filters and not allowing dust to go through.

 

With a wide range of sizes and types available, it’s essential to select the right filter bags and cages to suit your specific dust collector model. Following these basic steps will help you make informed decisions when ordering replacements, ensuring smooth operation and extended filter bag life for your dust collection system. 


Another option to find out the right size of your filters and cages is to send us a used filter or cage so we can measure it for you. Feel free to get in contact with us if you prefer this option and we will be happy to assist you.

 

If you need assistance with measuring filters or cages, please reach out to one of our experts clicking below:

Habla con uno de nuestros expertos en recolectores de polvo

Para obtener más capacitación e información relacionada con colectores de polvo, asegúrese de visitar nuestra página de Capacitación sobre Colectores de Polvo haciendo click aquí.

A Brief History of Dust Collectors

Dust collection began during the late 1800s Industrial Revolution in the US, spurred by the rise in manufacturing and the oil industry, which generated increased waste like sawdust, coal dust, and chemicals. This waste polluted the air near factories, leading to health concerns. To tackle this, dust collectors were invented.

 

Industrial America, manufacturing pollution
The rise of several manufacturing and oil companies
impulsed the need for dust collection systems

The First Dust Collector

The first dust collector is subject to debate, with some attributing it to Wilhelm Beth for his filter-based design, while others credit John Finch for his Cyclone Dust Collector introduced around 1885. Cyclones became popular by 1900 for their effectiveness in collecting coarse dust, and they’re still used today. Operating on centrifugal force, cyclones create a vortex that separates dust from air, depositing it into a collector while letting filtered air out.

 

Dust Collection Inventor
Wilhelm Beth, considered the father of dust collection

The Shaker Dust Collector

In the mid-1920s, a significant advancement in dust collection emerged with the invention of the Shaker Dust Collector by Wilhelm Beth in Germany. Wilhelm introduced a baghouse unit connected to machines via ductwork to collect sawdust and similar materials. The filter elements in this system are self-cleaned using a vibrating motor attached to the frame, which shakes the filter bags to dislodge accumulated dust.

 

Shaker dust collector design drawing
Shaker dust collector designed by Wilhelm Beth

Over time, the design of the Shaker Dust Collector was refined, incorporating better filters capable of capturing smaller particles while maintaining optimal airflow and efficiency. Although still in use today, Shaker Dust Collectors have declined in popularity due to their relatively low air-to-cloth ratio and large footprint, which demands considerable space.

Cartridge Dust Collector

In the early 1970s, the dust collector saw another evolution with the introduction of the cartridge collector. This innovation replaced the fabric in baghouse filters with cartridge media, offering finer filtration. Capable of efficiently filtering particles as small as 0.3 microns, cartridge collectors excel in removing fumes from the air.

New Dust Collection Options

In the mid-1900’s, environmental regulations became more common and major polluters came under pressure to clean up the massive amounts of dust they generated. Shaker bags and basic fabric filters could not handle the task. 

Reverse air baghouses were invented around this time, shortly followed by pulse jet baghouses. These provided tremendous improvements in dust collection by setting up an arrangement of filtration bags that could be cleaned by fans or compressed air pulses instead of shaking. These methods kept the bags cleaner and increased the efficiency of the filters. 

The invention of baghouses brought a new era in the history of dust collection. Both types of baghouses are still in use today, and they continue to work well. They are especially useful in applications with high temperatures and high humidity. Bags are now made of a wide variety of materials specialized for different needs. 

 

The Future of Dust Collection

As technology continues to evolve, the future of dust collection holds exciting possibilities. Integration with smart devices and cloud-based platforms could enable remote monitoring and control of dust collection systems, empowering operators to manage their systems with unprecedented efficiency and flexibility. Continued research and development efforts may unveil new methods and technologies to further improve dust collection performance, ultimately fostering safer and healthier work environments across various industries. 

 

Remote monitoring technology software
Remote monitoring can detect in advance the need for maintenance, or issues that can stop production, like hazardous leaks or fire

With ongoing technological advancements, the future holds the promise of even greater strides in optimizing dust collection systems for enhanced workplace safety and environmental stewardship. En Baghouse.com we are always researching and implementing the latest cut edge technologies, continuing to make history in dust collection.

 


Would you like to know how this technology can be applied to your application?

 

Contact Us to Speak to One of Our Baghouse Experts

Para obtener más capacitación e información relacionada con colectores de polvo, asegúrese de visitar nuestra página de Baghouse Online Training page.

Troubleshooting Your Dust Collector Pulse Jet Cleaning System

Top Load Baghouse

Overview of a pulse jet top load baghouse

For a dust collection system to operate efficiently, the filter cleaning system must be designed, installed and maintained properly. The following troubleshooting basics are intended to help avoid common pitfalls. (Note: Think of these tips as your dust collector’s GPS – they won’t replace the regular check-ups, but when your collector decides to throw a fit and send you through a back road, you will be better prepared to come back on track without losing lots of time or resources…)

When issues arise, it’s essential to troubleshoot effectively. Start by asking, “What has changed?” It could be a worn component or a shift in the operating environment. Even adding a single pickup point can impact the entire system.

Common pulse-cleaning system problem sources

Key Steps for Troubleshooting

  1. Baghouse personnel checking differential pressure in a baghouse

    A correct dP reading is vital for performance tracking.

    Check Differential Pressure (dP): Measure with a magnehelic gauge to assess filter media condition. The dP across the filters should slowly increase as dust builds up on the filters, then suddenly decrease when the cleaning system fires a pulse of compressed air, cleaning the filter and reducing pressure across the filter.

  2. Troubleshoot dP Gauge: As part of your periodic inspection process, remove the air lines connected to your dP gauge and ensure there are no obstructions or leaks in the lines. Replace old lines and ensure airtight connections. Even a small amount of dust in the gauge will lead to false readings or foul the gauge. 
  3. Listen for Problems: With the cleaning system active, listen to the pulse jets fire. You should hear a tight blast of air. If it sounds “off” – you hear a squeak, a rattle, a click but no air, etc. it is a sign that something requires attention. Most common issues are worn diaphragms (rattle or puff sound), leaks in connecting hoses (hiss sound), and stuck  solenoids (a click but no air noise).
  4. Check Compressed Air Pressure: Ensure your system has a compressed air gauge nearby so you can check it as part of your daily or weekly inspection. Review your equipment manual to ensure compressed air is set to the correct pressure. Ensure that your compressed air is clean and dry.
  5. When the timer board has its lights off, then lack of power could be the problem

    Timer board with lights off indicating no power

    Timer Board Settings: Less common issues arise with the timer board, most often due to a surge in electricity or an unauthorized change in the board settings. If you have a ‘clean on demand’ setup, the pulse cleaning system will only fire when the dP reaches a high limit. Equally important is the low limit, where the cleaning shuts off. There are other settings that can be programmed on your control board such as On-Time and Off-Time that control how long the valves are open for and how long it waits between firing the valves. Once set, these  should only be changed by authorized personnel. Most timer boards have indicator lights that will flag errors or basic issues. Refer to your equipment manual to ensure all settings are correct.

 

 

In the following video, you will see an overview of a system, from the blowpipes and diaphragm, to the control box. Actively listening to how your valves shoot will help you identify the most common issues.

Damaged by rust or out of position blowpipes could affect the operation of a pulse-cleaning system

Blowpipes knocked out of position

6. Other Common Pulse-Cleaning System Issues: Less common (but still important to know) issues include damaged or out of position blowpipes, stuck solenoids, water or oil in compressed air source, and electrical wiring issues.

When to Troubleshoot

Taped up pulse valve connecting tube indicating likely air leak location in a pulse-cleaning system

Taped up pulse valve connecting tube indicating likely air leak location

High dP without filter life exhaustion is your first indication of a cleaning system malfunction. If the dP seems off, start by listening for the pulse valves to fire, then run through the items above to identify the issue.

 

Adjust Timer for Medium-Pressure Systems: Lengthen pulse intervals by adjusting the timer to fill the reservoir adequately. Check for leaks and loose connections before replacing components.

 

Beyond Cleaning System Issues:

  1. Filter Inspection: Assess filter condition and look for moisture or caking issues.
  2. Environmental Conditions: Consider variations in temperature and humidity, especially in colder regions.
  3. Wear and Corrosion: Monitor aging systems, especially if handling abrasive or corrosive materials.
  4. Human Factors: Be aware of unintended actions like shutting off compressed air or adjusting fan dampers.
  5. Long-Term Monitoring: It is a good practice to monitor the system (specifically the dP) over an extended period to identify patterns or external factors affecting performance.


Hopefully, these tips will be able to guide you through unexpected challenges as a GPS, navigating the potential issues and ensuring your operations stay on track without losing valuable time or resources.

 

You haven’t found the problem yet? Did you find the problem, but you need assistance fixing the issue? 

Talk to one of our dust collection experts, and they will be able to help you troubleshoot!

Caso de Estudio: Optimización de la recolección de polvo en la producción de asfalto

When one asphalt plant began experiencing a mix of serious challenges (abrasive dust damaging equipment, fine particles posing health risks, and high temperatures creating cleaning and safety issues) they turned to Baghouse.com for a solution. What followed was a carefully engineered response that tackled each problem head-on and also boosted overall efficiency and compliance. Here’s how we helped them get their dust collection under control and their plant back on track.

Antecedentes

Baghouse.com collaborated with an asphalt plant facing some of the following challenges: 

  1. Coarse particles cause wear and tear on dust collection equipment and filter bags. 
  2. Fine asphalt dust presenting health risks and demanding specialized filtration methods due to varying material compositions. 
  3. Elevated temperatures creating difficulties such as dust adherence, cleaning, and the risk of fire and explosion.


En las últimas 4 décadas, Baghouse.com has helped many asphalt plants across North America design their systems, maintain, troubleshoot, and upgrade their systems. We have learned many good tips we would like to share with you in a series of three articles:


New large top-load pulse jet baghouse installed by Baghouse.com equipped to handle high temperatures, preventing issues such as dust sticking, enhancing cleaning efficiency, and minimizing fire and explosion risks.
New large top-load pulse jet baghouse installed by Baghouse.com

Scope of Work

Baghouse.com implemented a comprehensive solution featuring a large top-load pulse jet baghouse. 

Key components included:

  1. Specialized filter media designed for abrasion and temperature resistance, ensuring effective dust collection and prolonged filter life.
  2. Equipment and filter bags designed to withstand the abrasive nature of particles, minimizing maintenance costs.
  3. Systems equipped to handle high temperatures, preventing issues such as dust sticking, enhancing cleaning efficiency, and minimizing fire and explosion risks.

Outcome

Implementation of effective dust collection not only ensured workplace safety but also controlled emissions harmful to health and the environment, like volatile organic compounds, particulate matter, and carbon monoxide.

Additionally, closed belt systems on aggregate conveyor belts and efficient dust filtering systems contributed to reduced dust emissions. 

Conclusión

By combining high-quality filter media, abrasion-resistant systems, and temperature-resilient filtration, the client’s asphalt plant achieved increased efficiency, reduced maintenance costs, and ensured compliance with environmental and safety standards. This case study demonstrates the importance of specialized dust collection strategies in the asphalt industry to mitigate health risks, environmental impact, and operational challenges.

Would you like to know how a thorough technical inspection by Baghouse.com could improve the efficiency of your operations? Talk now with one of our baghouse experts for more information!