

WHAT FILTER FABRIC DO I NEED?

Filter Medias in a Nutshell

Selecting the correct filter will maximize performance, increase filter life and reduce system downtime and thus save you money.

Polypropylene

Normal maximum continuous operating temperature is 170°F.

Polypropylene felt is used for general applications where chemical and moisture attacks other fibers. Polypropylene offers high strength, excellent resistance to most acids and alkalis. Smoothness of fibers allow good cake release and resistance to blinding.

Acrylic

Normal maximum continuous operating temperature is 265°F.

The chemical resistance is satisfactory to most mineral and organic acids. Acrylic has fair resistance to most oxidizing agents. Overall Acrylic has good acid resistance, high resistance to hydrolysis.


Polyester

Normal maximum continuous operating temperature is 275°F.

Polyester felts offer very good resistance to chemicals, abrasion, and dry heat degradation. Polyester is good for dry heat applications. Polyester offers good resistance to most mineral and organic acids. It also has good resistance to most oxidizing agents and excellent to most organic solvents.

PPS

Normal maximum continuous operating temperature is 375°F.

Polyphenylene Sulfide has excellent resistance to both acids and alkalis. Ryton® or Procon® (Commonly known brands) work well in high moisture content applications and where dew point crossings are common. This media is suited for applications where emissions standards are tight.

Aramid

Normal maximum continuous operating temperature is 375°F.

General applications for Aramid felt include Highly abrasive dust and chemical applications where high temperatures exist. Aramid offers a good resistance to alkalies under most condition. Most mineral oxides cause degradation and partial decomposition. Aramid withstands common organic solvents very well. Some phenolic compounds cause solubility.

P84

Normal maximum continuous operating temperature is 500°F.

Polyimide is nonflammable and not hydroscopic. This felt offers extended bag life in low pH applications and helps reduce differential pressure across the baghouse. The felt operates well in high temperature applications, against acid attacks and is resistant to flex abrasion. Alkaline should be avoided at high temperatures when using this media.

Fiberglass

Normal maximum continuous operating temperature is 500°F.

Fiberglass has excellent resistance to most acids, but is attacked by hydrofluoric acid. Not recommended where bases and salts such as chlorides, bromides, and cyanides are present. This media has poor flex abrasion qualities and requires a 20 vertical wire minimum support cage when used in tubular bag form.

PTFE Felt

Normal maximum continuous operating temperature is 500°F.

PTFE membrane filters are useful in high humidity environments. With PTFE membrane filter bags, accumulated particles are easily cleaned from the surface, leading to less non-permeable dustcake formation, which increases pressure drop.

Would like to know which filter would work best for your application? [Click here!](#)

BAGHOUSE.com

FILTER FABRIC FINISHES

Why do you need them?

Finishes and treatments can help lengthen the life of your filter bag, improve its stability, and make cleaning an easier process.

Fiberglass

Silicone, Graphite, ePTFE

Protects glass yarns from abrasion, adds lubricity

Acid Resistant

Helps shield glass yarn from acid attack to extend life

ePTFE (bath)

Provides enhanced fiber-to-fiber resistance to abrasion and limited chemical resistance

Blue Max CRF-70

Improved acid resistance and reduces fiber-to-fiber abrasion, resistant to alkaline attack, improved fiber encapsulation

ePTFE Membrane

Capture of fine particulate, improved filtration efficiency, cake release and air flow capacity

Non-Fiberglass

Singe

Recommended for improved cake release

Silicone

Aids initial dust cake development and provides limited water repellency

Flame Retardant

Retards combustibility (not flame-proof)

PTFE

Improved water and oil repellency; limited cake release

Oleophobic

Improves resistance to oils and moisture.

ePTFE Membrane

Capture of fine particulate, improved filtration efficiency, cake release and air flow capacity

Acrilic Coatings

Improved filtration efficiency and cake release (may impede air flow in certain applications)

Acid Resistant

Helps shield glass yarn from acid attack to extend life

Would like to know which fabric finish would work best for your application? [Click here!](#)

BAGHOUSE.com